Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Med Nov Technol Devices ; 18: 100228, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2293095

ABSTRACT

The Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) virus spread the novel CoronaVirus -19 (nCoV-19) pandemic, resulting in millions of fatalities globally. Recent research demonstrated that the Protein-Protein Interaction (PPI) between SARS-CoV-2 and human proteins is accountable for viral pathogenesis. However, many of these PPIs are poorly understood and unexplored, necessitating a more in-depth investigation to find latent yet critical interactions. This article elucidates the host-viral PPI through Machine Learning (ML) lenses and validates the biological significance of the same using web-based tools. ML classifiers are designed based on comprehensive datasets with five sequence-based features of human proteins, namely Amino Acid Composition, Pseudo Amino Acid Composition, Conjoint Triad, Dipeptide Composition, and Normalized Auto Correlation. A majority voting rule-based ensemble method composed of the Random Forest Model (RFM), AdaBoost, and Bagging technique is proposed that delivers encouraging statistical performance compared to other models employed in this work. The proposed ensemble model predicted a total of 111 possible SARS-CoV-2 human target proteins with a high likelihood factor ≥70%, validated by utilizing Gene Ontology (GO) and KEGG pathway enrichment analysis. Consequently, this research can aid in a deeper understanding of the molecular mechanisms underlying viral pathogenesis and provide clues for developing more efficient anti-COVID medications.

2.
Innovations in systems and software engineering : Duplicate, marked for deletion ; : 1-17, 2022.
Article in English | EuropePMC | ID: covidwho-2045170

ABSTRACT

The second wave of the COVID-19 pandemic outburst triggered enormously all over India. This ill-fated and fatal brawl affected millions of Indian citizens, with many active and infected Indians struggling to recover from this deadly disease to date, leading to a grief situation. The present situation warrants developing a robust and sound forecasting model to evaluate the adversities of the epidemic with reasonable accuracy to assist officials in curbing this hazard. Consequently, we employed Auto-ARIMA, Auto-ETS, Auto-MLP, Auto-ELM, AM, MLP and proposed ELM methods for assessing accumulative infected COVID-19 individuals by the end of July 2021. We made 90 days of advanced forecasting, i.e., up to 24 July 2021, for the number of cumulative infected COVID-19 cases of India using all seven methods in 15 days’ intervals. We fine-tuned the hyper-parameters to enhance the prediction performance of these models and observed that the proposed ELM model offers satisfactory accuracy with MAPE of 5.01, and it rendered better accuracy than the other six models. To comprehend the dataset's nature, five features are extracted. The resulting feature values encouraged further investigation of the models for an updated dataset, where the proposed model provides encouraging results.

SELECTION OF CITATIONS
SEARCH DETAIL